Автор: SLY

Учёные нашли древнее кладбище необычных звёзд внутри гало нашей Галактики

Млечный путь около двух миллиардов лет назад разбросал сборище чрезвычайно старых звёзд, и учёные нашли их остывшие остатки


Поток Феникса, окружающий Млечный путь, в представлении художника

Астрономы обнаружили остатки древнего семейства звёзд, разорванного на части нашей Галактикой, Млечным путём, примерно два миллиарда лет назад.

Когда-то эти старые звёзды составляли шаровое скопление – сферическое образование звёзд – пока не столкнулись с гало Млечного пути на расстоянии порядка 60 000 световых лет от Земли, после чего на этом месте образовалась звёздная река, которую люди назвали “поток Феникса” [Phoenix Stream]. Это отжившее своё скопление, предок Феникса, “занимает особое место, кардинально отличающееся от наблюдаемых сегодня в местной части Вселенной шаровых скоплений”, написали учёные в работе, опубликованной в журнале Nature.

“Поток Феникса” отличает от остальных крайне низкое содержание металлов (астрономы называют “металлами” все элементы тяжелее гелия). Оно оказалось гораздо ниже т.н. “порога металличности“, соблюдение которого астрофизики считали необходимым условием для формирования шаровых скоплений. Открытие этого экстремального примера переворачивает все наши представления о формировании этих круглых структур, что в итоге повлияет на наше понимание процессов формирования галактик и их эволюции.
(далее…)

Физики в ЦЕРН сообщили об обнаружении новой экзотической частицы

Коллаборация учёных эксперимента LHCb (от англ. Large Hadron Collider beauty experiment – самый маленький из четырёх основных детекторов на Большом адронном коллайдере, БАК) сообщила об открытии новой экзотической частицы под названием “тетракварк“. Работу, авторами которой выступило более 800 человек, ещё пока не проверили независимые рецензенты, однако её уже представили на семинаре. Данные укладываются в статистические рамки, которые необходимо соблюсти для того, чтобы заявлять об открытии новой частицы.

Это открытие знаменует значительный прорыв в поисках, шедших почти 20 лет во множестве физических лабораторий всего мира.

Чтобы понять, что такое тетракварк и чем важно это открытие, нам нужно вернуться в 1964 год, когда в физике частиц разворачивалась революция. Тогда только началась битломания, война во Вьетнаме была в самом разгаре, а парочка молодых радиоастрономов из Нью-Джерси обнаружила убедительные доказательства теории Большого взрыва.
(далее…)

Мы уже сегодня можем создать космический лифт (только его нужно будет свесить с Луны)

Космические лифты могут кардинально уменьшить стоимость выхода в космос, однако до сего момента они не были технически реализуемыми

Возможно, главнейшим препятствием на пути распространения человечества по солнечной системе служит запредельно высокая стоимость выхода из гравитационного колодца Земли. Так, по крайней мере, считают Зефир Пенуар из Кембриджского университета в Британии и Эмили Сэндфорд из Колумбийского университета в Нью-Йорке.

Проблема в том, что ракетные двигатели должны выбрасывать массу в одном направлении, чтобы получать тягу, двигающую космический корабль в другом. И для этого требуется огромное количество топлива, которое в итоге выбрасывают – но которое тоже нужно ускорять вместе с кораблём.

В итоге стоимость вывода на орбиту единственного килограмма полезного груза колеблется где-то в районе десятков тысяч долларов. Долететь до Луны и обратно будет ещё дороже. Поэтому все очень заинтересованы в поисках более дешёвого способа выйти на орбиту.

Одна из идей заключается в постройке космического лифта – кабеля, протянувшегося с Земли на орбиту, по которому можно было бы вскарабкаться в космос. Преимущество его в том, что процесс перемещения по кабелю можно будет питать солнечной энергией, поэтому топливо с собой тащить не потребуется.
(далее…)

На ферме, где из растений добывают металл

Растения-гипераккумуляторы процветают на почве с высоким содержанием металла, убивающей остальные виды – и ботаники уже изучают потенциал фитомайнинга


Богатый никелем сок дерева из Малайзии

Некоторые из земных растений полюбили металл. Их корни работают практически как магниты, и эти организмы – а их известно около 700 – процветают на богатых металлом почвах, на которых сотни тысяч других видов растений погибают.

Если сделать надрез на одном из таких деревьев, или обработать листья подобного кустарника на прессе для масла, можно получить сок неонового зелёно-голубого цвета. Этот сок на четверть состоит из никеля – и это куда как более сильная концентрация металла, чем можно встретить в руде, которую отправляют на никелевые плавильни по всему миру.

Растения не просто собирают минералы из почвы, включая их в свои тела – они накапливают их до “невообразимых” объёмов, сказал Алан Бейкер, профессор ботаники из Мельбурнского университета, исследовавший взаимоотношения растений с почвой с 1970-х годов. Эти растения может быть наиболее эффективной в мире плавильной печью для минералов с питанием от солнечной энергии. Что, если можно было бы частично заменить традиционную добычу минералов, дорогую по затратам энергии и вреду окружающей среде, на добычу никельсодержащих растений?

Бейкер вместе с международной командой коллег решили убедить в мир в том, что эта идея – не просто некий забавный мысленный эксперимент. И команда доказала это на небольшом масштабе, на клочке земли, взятом в аренду у деревни на малазийской стороне острова Борнео. Каждые 6-12 месяцев фермеры срезают порядка 30 см с этих растений-гипераккумуляторов, и выжигает или выжимает из них металл. После краткой процедуры очистки фермеры получают порядка 250 кг цитрата никеля, что может стоить на международных рынках несколько тысяч долларов.
(далее…)

Свежие космические фотографии: следим за штормами Юпитера

Космический аппарат “Юнона” совместно с телескопом Хаббла и обсерваторией Джемини помогут учёным лучше разобраться в атмосфере этой планеты


Вид с расстояния всего в 18 000 км от поверхности. “Голубой” участок состоит из закрученных взаимосвязанных штормов. Белые облака слева – высотные, они отбрасывают тени на следующий слой атмосферы, расположенный ниже.

Юпитер – обладатель одной из самых странных атмосфер во всей нашей Солнечной системе. Считается, что у газовых гигантов, подобных Юпитеру, имеется полутвёрдое ядро, однако в основном они состоят из газов типа водорода, гелия и аммиака. Также эта планета вращается быстрее всех остальных в Солнечной системе – в результате в её атмосфере царит большая турбулентность, и появляются сложнейшие штормовые системы. В последние несколько лет космический аппарат “Юнона” от НАСА движется по орбите планеты, чтобы тщательнее присматривать за поведением Юпитера. НАСА взяла название космического аппарата из римской мифологии: главный бог Юпитер был известным волокитой, и когда он приводил очередную женщину к себе в обитель, он скрывал свои проделки, закрывая себя толстым слоем облаков. Однако он забыл, что его жена, Юнона, могла видеть сквозь облака.

В мае 2020 года НАСА объявило, что два телескопа, космический телескоп им. Хаббла и обсерватория Джемини [строго говоря, состоящая из двух телескопов / прим. перев.] скоординируют свои наблюдения с кораблём “Юнона”, чтобы тщательнее изучить планету. Исследователям нужно понять, как работает атмосфера Юпитера, и лучший способ сделать это – рассматривать её через фильтры с разными длинами волн. К счастью, и у телескопа Хаббла, и у телескопов Джемини есть подходящие фильтры для того, чтобы видеть сквозь дымку Юпитера. Применяя линзы, пропускающие ультрафиолет, инфракрасное излучение и другие длины волн, учёные получат более полную картину происходящего.
(далее…)

Когда-нибудь самолёты будут летать на плазменных струях

Плазменные двигатели могут помочь реактивным самолётам летать, не сжигая ископаемое топливо


Стальной шарик поддерживается в подвешенном состоянии давлением плазменной струи

Когда-нибудь самолёты будут летать на плазменных струях, не сжигая ископаемое топливо – такое будущее обещает новое исследование китайских учёных.

Плазму на основе таких газов, как ксенон, для обеспечения движения используют различные космические корабли – например, так работала межпланетная станция Dawn от НАСА. Однако подобные маневровые двигатели способны генерировать лишь небольшие усилия, поэтому они и работают только в дальнем космосе, где нет сопротивления воздуха.

Теперь исследователи создали прототип двигателя, способного генерировать плазменные струи с тягой, сравнимой с таковой у обычных реактивных двигателей, причём используя только воздух и электричество.

Воздушный насос нагнетает воздух под высоким давлением со скоростью 30 литров в минуту в камеру ионизации устройства, использующего микроволны для превращения этого потока воздуха в струю плазмы, вырывающуюся из кварцевой трубы. Температура этой плазмы может превышать 1000 °C.
(далее…)

Спросите Итана: почему учёные никогда не смогут найти точного решения общей теории относительности


В ньютоновской теории тяготения орбиты вращения вокруг отдельных крупных масс являются идеальными эллипсами. Но в общей теории относительности существует дополнительная прецессия за счёт кривизны пространства-времени, из-за чего орбиты со временем сдвигаются, иногда даже измеряемо. Орбита Меркурия прецессирует со скоростью 43″ в сто лет (1″ – это угловая секунда, 1/3600 градуса); меньшая из чёрных дыр OJ 287 прецессирует со скоростью 39° за 12 лет орбиты.

Сложно оценить всю революционность перехода от ньютоновской точки зрения на Вселенную к эйнштейновской. Согласно ньютоновским механике и тяготению, Вселенная полностью детерминирована. Если бы вы дали учёному массы, местоположение и импульсы всех и каждой частиц Вселенной, он смог бы определить, где будет находиться и что будет делать каждая частица в любой момент в будущем.

В теории уравнения Эйнштейна тоже детерминистские, и можно представить нечто похожее: если бы только вы знали массы, позиции и импульс каждой частицы Вселенной, вы могли бы вычислить что угодно, заглядывая сколь угодно далеко в будущее. Но если в ньютоновской вселенной мы можем записать уравнения, управляющие поведением частиц, во вселенной под управлением общей теории относительности (ОТО) мы даже и на это не способны. И вот, почему.
(далее…)

Мой канал на YouTube

Здравствуйте, уважаемые читатели. В рамках самоизоляции иногда дома становится очень скучно, поэтому я решил записать несколько развлекательных видео, и посмотреть, что из этого выйдет.

Это видео с фокусами, которыми я немного увлекаюсь. Сейчас по известным причинам перед живой аудиторией выступать невозможно, поэтому пока я буду делать это удалённо.

На первый взгляд фокусы не относятся к научно-популярной тематике, но на самом деле, это не совсем так. Задумывались ли вы когда-нибудь над тем, почему людям нравятся фокусы?

Ну, кроме того, что профессия фокусника – самая честная. Ведь, как сказал один из магов, фокусник обещает вас обмануть – и обманывает.

Но ещё фокус вызывает в мозге взаимодействие двух систем – как называет их в своей книге “Думай медленно… решай быстро” нейрофизиолог Даниэль Канеман, “системы 1” и “системы 2”.
(далее…)

Поиски внеземной жизни при помощи Солнца в качестве гравитационного телескопа

Астрономия, вне всякого сомнения, одна из самых интересных областей физики. В последние несколько десятилетий одним из процветающих направлений в этой области был поиск экзопланет. И хотя первую планету открыли только в 1992 году, на начало апреля 2020 года существует уже 4 144 подтверждённые экзопланеты. Нас, как любителей НФ, естественно, больше всего интересуют те 55 из них, которые считаются потенциально обитаемыми. К сожалению, с обычными телескопами у нас не получится сделать фотографию Земли 2.0 с такой детализацией, которая позволила бы нам понять, есть ли у неё особенности, свидетельствующие о наличии жизни.

Недавно очередной этап конкурса Программы инновационных передовых концепций НАСА (NIAC), по результатам которого будет распределяться финансирование, прошла миссия по использованию Солнца в качестве гравитационной линзы. Её цель – изменить текущую ситуацию с телескопами, воспользовавшись эффектом солнечного гравитационного линзирования.
(далее…)

Как натренировать свой мозг на увеличение выработки гормонов счастья

Вам когда-нибудь хотелось научиться просто включать выработку гормонов счастья в мозге? Представьте, насколько проще было бы вставать с постели каждое утро, выполнять самые скучные этапы вашей работы, находить энергию для того, чтобы всегда показывать только свою лучшую сторону людям, к которым вы неравнодушны. Но возможно ли попытаться натренировать наши мозги на усиление счастья (и стоит ли это делать)?

“Поиск хороших ощущений – природный инструмент выживания”, – пояснила профессор Лоретта Брюнинг, основатель Института внутреннего млекопитающего, во время нашей с ней беседы. “Животные, к примеру, ищут еду, чтобы облегчить неприятное чувство голода. Они ищут тепло, чтобы облегчить неприятное чувство холода. А гормоны счастья начинают вырабатываться ещё до того, как млекопитающее поест или согреется, поскольку мозг включает их сразу, как только видит способ удовлетворить желания”.

То же верно и для людей. Наш мозг включает гормоны счастья, когда вы видите способ удовлетворить связанную с выживанием необходимость, такой, как еда, безопасность или социальная поддержка. Однако у нас есть сложность – наша кора, отвечающая за сознательное мышление, выстраивает длинные ассоциативные цепочки, основываясь на раннем жизненном опыте.
(далее…)