Рубрика: ФИЗИКА

Десятилетия поисков раскрыли подробности того, как ведёт себя антиматерия внутри протона

Двадцать лет назад физики занялись исследованием загадочной асимметрии внутренностей протона. И вот результаты их работы демонстрируют, как антиматерия помогает стабилизировать ядро каждого атома.


На первый взгляд протон состоит из трёх частиц, кварков. Но если присмотреться к нему поближе, можно обнаружить море частиц, возникающих и вновь исчезающих в небытие.

Нечасто можно встретить упоминание того, что протон, положительно заряженная частица, составляющая ядра атомов, частично состоит из антиматерии.

В школе мы узнаём, что протон – это клубок из трёх элементарных частиц, кварков. Его составляют два “верхних” кварка и один “нижний”, комбинация электрических зарядов которых (+2/3 и -1/3 соотв.) в сумме дают заряд протона в +1. Однако это упрощение, за которым скрывается гораздо более удивительная и ещё не до конца понятая история.

На самом же деле внутри протона вьётся постоянно изменяющееся количество кварков шести разновидностей, их двойников из антиматерии с противоположным зарядом (антикварков), и глюонов – частиц, связывающих их вместе, превращающихся в них и с лёгкостью множащихся. И каким-то образом этот мутный водоворот оказывается идеально стабильным и внешне простым – имитируя в некоторых аспектах простую тройку кварков. “Как это всё работает – это, честно говоря, больше похоже на чудо”, – сказал Дональд Гизаман, специалист по ядерной физике из Аргонской национальной лаборатории в Иллинойсе.
(далее…)

Как в одном атоме умещается вся физика


Большинство людей, представляя себе атом, рисуют в воображении небольшое ядро, состоящее из протонов и нейтронов, вокруг которого двигаются один или несколько электронов. Это представление основано на интерпретации квантовой механики, основанной на частицах. Но для описания атомов в стандартных условиях его недостаточно.

Если вы хотите раскрыть секреты Вселенной, вам только и нужно, что допрашивать её, пока она не выдаст ответы в такой форме, в какой вы сможете их понять. При взаимодействии двух квантов энергии – будь то частицы или античастицы, массивные они или безмассовые, фермионы или бозоны – его результат в принципе может рассказать вам о правилах и законах, которым подчиняется эта система. Если мы будем знать о всех возможных вариантах результатов любого взаимодействия, включая их относительные вероятности – только тогда мы сможем говорить о том, что понимаем, что происходит.

Удивительно, но всё, что мы знаем о Вселенной, можно так или иначе привязать к самой скромной из всех известных нам сущностей: к атому. Атом – это мельчайшая единица материи, всё ещё сохраняющая уникальные характеристики макроскопического мира, такие, как физические и химические свойства. И при этом это фундаментально квантовая сущность, со своими уровнями энергии, свойствами и законами сохранения. Более того, этот непримечательный атом связан со всеми четырьмя известными фундаментальными взаимодействиями. В единственном атоме на самом деле можно увидеть всю физику. И вот, что она может рассказать нам о Вселенной.
(далее…)

Возможно, без использования комплексных чисел нельзя описать реальность

Из нового мысленного эксперимента следует, что квантовая механика не работает без использования этих странных чисел, становящихся отрицательными при возведении в квадрат

Несколько десятилетий назад математиков неприятно поразило одно откровение: для вычисления свойств определённых кривых требовалось, казалось, невозможное – ввести числа, квадрат которых будет отрицательным.

Любое число с числовой прямой в квадрате будет положительным: 22 = 4, и (-2)2 = 4. Математики начали называть эти привычные числа “действительными” [по-английски их называют real, т.е. “реальными” / прим. пер.], а вроде бы невозможную породу чисел “мнимой”.

Мнимые числа, которые записывали при помощи i (где, к примеру, (2i)2 = -4), постепенно стали неотъемлемой частью абстрактного математического мира. Физикам же хватало и действительных чисел для описания реальности. Иногда т.н. “комплексные числа”, содержащие действительную и мнимую часть, типа 2 + 3i, ускоряли вычисления, но были, в общем-то, необязательными. Ещё ни один прибор не возвращал показаний, в которых содержалась бы мнимая единица.
(далее…)

Либо квантовая реальность гораздо страннее, чем мы думаем, либо она схлопывается

Статьи выходят раз в неделю. Самая новая статья доступна только платным пользователям на этом сайте и на проектах с удобной подпиской: Boosty / Patreon / Sponsr

* * *

Либо квантовые состояния должны схлопываться на макроскопическом уровне, либо реальность нереальна

Квантовая механика при ближайшем рассмотрении ставит перед нами несколько глубоких вопросов, касающихся природы самой реальности. Часто они принимают вид мысленных экспериментов, за которыми позже (часто гораздо позже) следуют реальные. Один из самых глубоких и сложных примеров – мысленный эксперимент, предложенный в 1960-х Юджином Вигнером, под названием “парадокс друга Вигнера” (не советуем вам дружить с Вигнером). И теперь, гораздо позже, Вигнера и его друга формализовали и расширили. Результат приводит нас к противоречию: либо наша реальность куда как более странная и менее реальная на квантовом уровне, либо квантовые состояния на крупных масштабах существовать не могут.

Не дружите с Вигнером

Чтобы понять, почему у Вигнера не должно быть друзей, сначала нам нужно углубиться в некоторые детали квантовой механики. Представьте, что мы измеряем спин одного электрона. У него есть ориентация в пространстве, но измерить её невозможно. Нам придётся выбрать ориентацию и измерить спин вдоль неё. То есть, мы можем спросить электрон, вращается ли он по вертикали вверх или вниз. При прочих равных, ответ будет вверх или вниз с 50% вероятностью.
(далее…)

Двигатели будущих космических кораблей, возможно, будут работать на синтезе с удержанием в кристаллической решётке

Исследователи из НАСА демонстрируют возможности проведения атомного синтеза в металлах при комнатной температуре


В атомных решётках этих образцов эрбия содержатся загнанные туда дейтроны

Синтеза ядер в термоядерных реакциях крайне тяжело достичь. Нужны огромная плотность вещества и давление, чтобы заставить элементы вроде водорода и гелия преодолеть естественное отталкивание. На Земле для экспериментов по синтезу обычно требуется массивное и дорогое оборудование.

Однако учёные из Гленновского исследовательского центра НАСА продемонстрировали метод запуска ядерного синтеза без строительства огромных стеллараторов или токамаков. Для этого им потребовалось всего лишь немного металла, немного водорода и ускоритель электронов.

Команда считает, что их новый метод, названный синтезом с удержанием в кристаллической решётке [lattice confinement fusion] потенциально может привести к созданию новых источников энергии для исследования глубокого космоса. Результаты исследования они опубликовали в двух работах в журнале Physical Review C.
(далее…)

Физики в ЦЕРН сообщили об обнаружении новой экзотической частицы

Коллаборация учёных эксперимента LHCb (от англ. Large Hadron Collider beauty experiment – самый маленький из четырёх основных детекторов на Большом адронном коллайдере, БАК) сообщила об открытии новой экзотической частицы под названием “тетракварк“. Работу, авторами которой выступило более 800 человек, ещё пока не проверили независимые рецензенты, однако её уже представили на семинаре. Данные укладываются в статистические рамки, которые необходимо соблюсти для того, чтобы заявлять об открытии новой частицы.

Это открытие знаменует значительный прорыв в поисках, шедших почти 20 лет во множестве физических лабораторий всего мира.

Чтобы понять, что такое тетракварк и чем важно это открытие, нам нужно вернуться в 1964 год, когда в физике частиц разворачивалась революция. Тогда только началась битломания, война во Вьетнаме была в самом разгаре, а парочка молодых радиоастрономов из Нью-Джерси обнаружила убедительные доказательства теории Большого взрыва.
(далее…)

Когда-нибудь самолёты будут летать на плазменных струях

Плазменные двигатели могут помочь реактивным самолётам летать, не сжигая ископаемое топливо


Стальной шарик поддерживается в подвешенном состоянии давлением плазменной струи

Когда-нибудь самолёты будут летать на плазменных струях, не сжигая ископаемое топливо – такое будущее обещает новое исследование китайских учёных.

Плазму на основе таких газов, как ксенон, для обеспечения движения используют различные космические корабли – например, так работала межпланетная станция Dawn от НАСА. Однако подобные маневровые двигатели способны генерировать лишь небольшие усилия, поэтому они и работают только в дальнем космосе, где нет сопротивления воздуха.

Теперь исследователи создали прототип двигателя, способного генерировать плазменные струи с тягой, сравнимой с таковой у обычных реактивных двигателей, причём используя только воздух и электричество.

Воздушный насос нагнетает воздух под высоким давлением со скоростью 30 литров в минуту в камеру ионизации устройства, использующего микроволны для превращения этого потока воздуха в струю плазмы, вырывающуюся из кварцевой трубы. Температура этой плазмы может превышать 1000 °C.
(далее…)

Квантовый эксперимент утверждает, что объективной реальности не существует

Альтернативные факты распространяются в обществе на манер вируса. И, судя по всему, они уже заразили науку – по крайней мере, квантовые исследования. Это может показаться контринтуитивным. Ведь научный метод основан на надёжных методах наблюдений, измерений и повторяемости. Факт, подтверждённый измерениями, обязан быть объективным – таким, с которым согласились бы все наблюдатели.

Однако недавно мы опубликовали в журнале Science Advances работу, где показываем, что в микромире атомов и частиц, управляемом странными правилами квантовой механики, два разных наблюдателя могут столкнуться с разными фактами. Иначе говоря, согласно нашей лучшей теории о строительных кирпичиках природы, факты бывают субъективными.

Наблюдатели играют заметную роль в квантовом мире. Согласно теории, частицы могут находиться в нескольких местах или состояниях одновременно – это называется суперпозицией. Однако, как ни странно, такое бывает только, когда их не наблюдают. Как только вы начинаете наблюдать квантовую систему, она выбирает определённое местоположение или состояние, нарушая суперпозицию. То, что природа ведёт себя таким образом, было множество раз доказано в лаборатории – к примеру, в знаменитом двухщелевом эксперименте.
(далее…)

10 слов, имеющих совсем другой смысл для физиков

Аромат

В физике частиц аромат никак не связан с запахом [по-английский flavour – это и вкус, и запах / прим. перев.]. Вместо этого этот термин обозначает частицы различных типов. Всего есть шесть “ароматов”, или вариаций, кварков: верхний, нижний, странный, очарованный, прелестный и истинный. Лептонов тоже есть шесть видов: электрон, мюон, тау, и соответствующие им нейтрино (электронное, мюонное и тау-нейтрино).
(далее…)

Учёные начинают всерьёз рассматривать варп-двигатели космических кораблей

Тяжело жить в релятивистской Вселенной, где даже ближайшие звёзды расположены так далеко от нас, а скорость света абсолютна. Неудивительно, что различные научно-фантастические произведения сплошь и рядом используют двигатели, позволяющие передвигаться быстрее света (Faster-than-Light, или FTL), в качестве устройства для развития сюжета.

Нажмите кнопочку, надавите на педаль, и модный двигатель – принцип работы которого никто не может объяснить – перенесёт нас в другую точку пространства-времени.

Но в последние годы научное сообщество всколыхнули волны понятного вдохновения и естественного скептицизма, связанные с заявлениями о том, что определённую концепцию такого двигателя – пузырь Алькубьерре – вполне можно реализовать на практике.

Именно по этой теме в августе 2019 проходила презентация в Американском институте аэронавтики на форуме космических двигателей и энергии. Презентацию давал Джозеф Анью – будущий инженер, помощник исследователя из Алабамского университета в Хантсвилле, стажирующийся в исследовательском центре реактивных двигателей.
(далее…)