Рубрика: КОСМОС

Может ли обитаемая планета вращаться вокруг сверхмассивной чёрной дыры?

У чёрной дыры полно энергетических ресурсов, способных помочь жизни закрепиться. Но учёный из НАСА определил, что, несмотря на то, что показывают в кино, возникновение пригодных для жизни условий вблизи неё маловероятно.

Фильм “Интерстеллар” занимает особое место в сердцах любителей научной фантастики. Исполнительным продюсером фильма и его научным консультантом был Кип Торн, физик, получивший нобелевскую премию, пообещавший, что ничто в этом кино не будет нарушать законы физики, а любые выводы будут сделаны на основе науки.

Сюжет его строится на том, что Земля становится непригодной для жизни, и людям приходится искать новый дом. На удачу астрономы открыли червоточину рядом с Сатурном, служащую туннелем через пространство-время, ведущим к сверхмассивной чёрной дыре Гаргантюа.

Вокруг неё вращается множество планет. НАСА отправляет несколько миссий для изучения планет, надеясь найти среди них обитаемую.
(далее…)

Как сформировался самый яркий объект Вселенной

Активные галактики – одни из самых ярких и впечатляющих объектов на небе. Они обычно бывают массивными и удалёнными, и излучают чрезвычайно большое количество энергии в процессе, когда материя падает на сверхмассивные чёрные дыры, скрывающиеся в их центре. Астрономы недавно обнаружили, что некоторые из них скрыты от наших глаз огромными количествами газа и похожей на дым пыли. Однако неизвестно, как эти редкие объекты формируются и “питаются”.

Но теперь наша команда астрономов разузнала больше данных по поводу происхождения самой яркой галактики Вселенной: квазара под названием W2246. Наши открытия, опубликованные в журнале Science, раскрывают явные признаки того, что W2246 формируется путём слияния нескольких галактик.
(далее…)

Правдивые факты из области космологии, или Критика неправильных представлений

Из блога Шона Кэрролла, теоретического физика и космолога из Калифорнийского технологического университета

В ответ на мои рассуждения о гипотезах возникновения Вселенной и низкой энтропии на её ранних этапах я получил вопросы, напомнившие мне вот о чём: у людей в головах до сих пор существуют серьёзные в своей неправильности представления о Вселенной (и о состоянии представления учёных о ней). Поэтому я решил быстро, в формате кратких твитов, озвучить некоторые факты о космологии, которые могут стать полезной корректировкой неправильных представлений. Поехали!
(далее…)

Спросите Итана: как будет выглядеть наша первая прямая фотография землеподобной экзопланеты?


Фото земли, полученное камерой DSCOVR-EPIC, и оно же, ухудшенное до разрешения 3х3 пикселя – примерно в таком виде исследователи будущего увидят экзопланеты

За последнее десятилетия, в основном благодаря миссии Кеплер, наши знания касательно планет других звёздных систем чрезвычайно сильно увеличились. От всего нескольких миров – в основном массивных, с быстрыми, внутренними орбитами, вращающихся вокруг звёзд с небольшой массой – к буквально тысячам планет совершенно разных размеров. Теперь мы знаем, что миры размером с Землю и чуть побольше встречаются чрезвычайно часто. Обсерватории из следующего поколения, которые появятся как в космосе (например, телескоп Джеймса Уэбба), так и на земле (ГМТ и ELT), смогут напрямую сфотографировать ближайшие из этих миров. Как же они будут выглядеть? Об этом спрашивает наш читатель:

Какого рода разрешение можно ожидать от этих фото? Несколько пикселей, или видимость каких-нибудь подробностей?

Сами по себе фотографии не будут очень впечатляющими. Однако из них мы сможем узнать всё, о чём можно мечтать (в разумных пределах).
(далее…)

Новые аргументы в пользу существования неуловимой девятой планеты

Астрономы нашли ещё один странный объект, чьё существование говорит в пользу того, что где-то на задворках Солнечной системы притаилось гигантское небесное тело.

Астрономия серьёзно потрепала научные учебники в последние несколько лет, особенно в вопросе составления каталога тел Солнечной системы. Большую часть XX века у нас было девять планет, и мы заучивали их названия в школе при помощи разных мнемонических правил вроде “Можно Вылететь За Марс, Ювелирно Свернув У Нашей Планеты” [англоязычный вариант: My Very Excellent Mother Just Served Us Nine Pizzas (моя прекрасная мама только что подала нам девять пицц)]. Потом в 2006 году последнее слово пришлось отбросить; группа астрономов определила, что Плутон лучше рассматривать, как карликовую, неполноценную планету. И вот сейчас, после порядка 10 лет относительного спокойствия, астрономы хотят добавить нам новую девятую планету, вновь переворачивая представление человечества о нашей Солнечной системе, не говоря уже о школьной программе.

За последние несколько лет некоторые астрономы раздумывали о новой планете в нашей космической округе. Проблема в том, что они её никогда не видели. Они лишь наблюдают свидетельства того, что она может существовать: скопление мелких небесных тел, движущихся по необычным орбитам по сравнению с остальной системой. Подобная конфигурация, по их словам, предполагает, что эти объекты толкнула какая-то мощная невидимая сила: огромная планета, в 10 раз превышающая Землю по массе, движущаяся по орбите на границе Солнечной системы, далеко за пределами орбиты Плутона.
(далее…)

Учёные нашли первую экзолуну: у планеты размером с Юпитер есть спутник размером с Нептун

Пара астрономов, обрабатывавших данные, полученные с телескопа Кеплер, обнаружили первую экзолуну. Луна находится в системе Kepler 1625, примерно в 8000 световых лет от нас, в созвездии Лебедь. Она вращается вокруг газового гиганта Kepler 1625b, и, в отличие от всех лун в Солнечной системе, представляет собой “газовую луну”.

Обнаружение экзолуны было лишь вопросом времени. Благодаря телескопу Кеплер мы нашли уже тысячи экзопланет. А где есть планеты, там можно ожидать и наличия лун. Но, хотя это казалось неизбежным, первая подтверждённая находка экзолуны – это все равно здорово.
(далее…)

Новые подсказки для поиска лесов на далёких планетах

Чтобы найти признаки растительной жизни на других мирах, полезно будет понять историю нашего

Впервые астрономы удалённо обнаружили признаки наличия жизни на планете в декабре 1990-го. “Космический аппарат Галилео обнаружил свидетельства наличия больших количеств газообразного кислорода, широко распространённого поверхностного пигмента с резким краем поглощения в красной части видимого спектра, и атмосферного метана, находящегося в экстремальной термодинамической неустойчивости”, писали астрономы в своей работе для журнала Nature. “Всё это вместе убедительно свидетельствует о возможности наличия жизни”.

Но каким-то особенным открытием это не стало. Имелась в виду планета Земля; по настоянию Карла Сагана космический аппарат Галилео по пути к Юпитеру направил свои инструменты на домашний мир, чтобы узнать, можно ли обнаружить жизнь на планете из космоса.
(далее…)

Найдены последние остатки обычной материи Вселенной

Десятилетиями астрономы не могли найти всю атомную материю Вселенной. Но в нескольких новых работах учёные раскрыли места, в которых она пряталась


Компьютерная симуляция горячего газа между галактиками намекает на местоположение недостающей материи Вселенной

Астрономы, наконец, обнаружили последние недостающие части Вселенной. Они прятались от нас с середины 1990-х, когда исследователи решили провести инвентаризацию всей “обычной” материи в космосе – звёзд, планет, газа, всего, что сделано из атомных частичек. (Это не “тёмная материя“, остающаяся совершенно отдельной загадкой). Они довольно неплохо представляли себе, сколько материи должно быть в сумме, на основе теоретического изучения процессов сотворения материи во время Большого взрыва. Изучение реликтового излучения (РИ) – остаточного свечения Большого взрыва – должно было подтвердить эти изначальные оценки.
(далее…)

Спросите Итана: если свет сжимается и расширяется вместе с пространством, как мы можем засечь гравитационные волны?


Вид с воздуха на детектор гравитационных волн Virgo, расположенный в муниципалитете Кашина близ города Пиза в Италии. Virgo – это гигантский лазерный интерферометр Майкельсона с плечами длиной по 3 км, дополняющий два одинаковых детектора LIGO длиной по 4 км.

За последние три года у человечества появился новый тип астрономии, отличающийся от традиционных. Для изучения Вселенной мы уже не просто ловим свет телескопом или нейтрино при помощи огромных детекторов. Кроме этого, мы также впервые можем видеть рябь, присущую самому пространству: гравитационные волны. Детекторы LIGO, которые теперь дополняет Virgo, и скоро будут дополнять ещё KAGRA и LIGO India, обладают чрезвычайно длинными плечами, которые расширяются и сжимаются при проходе гравитационных волн, выдавая обнаруживаемый сигнал. Но как это работает? Наш читатель спрашивает:

Если длины волн света растягиваются и сжимаются вместе с самим пространством-временем, как LIGO может обнаружить гравитационные волны? Они ведь расширяют и сжимают два плеча детектора, поэтому волны внутри них тоже должны расширяться и сжиматься. Разве укладывающееся в плечо количество длин волн не будет оставаться постоянным, в результате чего интерференционная картина не будет меняться, и волны будет нельзя засечь?

Это один из самых распространённых парадоксов, которые представляют себе люди, размышляющие о гравитационных волнах. Давайте разберёмся и найдём ему решение!
(далее…)

Нейтронные звёзды, белые карлики, коричневые карлики, и другие тела, не являющиеся звёздами


Нейтронная звезда – одно из плотнейших скоплений материи во Вселенной, однако на её массу есть верхний предел. Если выйти за него, нейтронная звезда схлопнется и сформирует чёрную дыру. Но ни нейтронные звёзды, ни чёрные дыры, несмотря на их большую массу, нельзя считать звёздами

Если говорить о звёздах, то их типов существует огромное количество. Наше Солнце не представляет собой ничего интересного, поскольку бывают звёзды более красные и более голубые, более яркие и более тусклые, более и менее массивные, причём во много раз. И если Солнце проживёт порядка 10-12 млрд лет, некоторые звёзды могут жить триллионы лет, а другие взрываются или схлопываются, прожив всего миллионы. Разнообразие звёзд огромно.

И всё-таки, многие объекты Вселенной, которые мы называем звёздами – белые карлики, коричневые карлики, нейтронные звёзды, и прочие – не являются звёздами на самом деле. Чтобы быть звездой, нужно не просто излучать свет, видимый в галактике. И вот почему, согласно астрономии, огромный набор объектов, которые мы зовём “звёздами”, не попадают под это определение.
(далее…)