Рубрика: КОСМОС

Спросите Итана: как будет выглядеть наша первая прямая фотография землеподобной экзопланеты?


Фото земли, полученное камерой DSCOVR-EPIC, и оно же, ухудшенное до разрешения 3х3 пикселя – примерно в таком виде исследователи будущего увидят экзопланеты

За последнее десятилетия, в основном благодаря миссии Кеплер, наши знания касательно планет других звёздных систем чрезвычайно сильно увеличились. От всего нескольких миров – в основном массивных, с быстрыми, внутренними орбитами, вращающихся вокруг звёзд с небольшой массой – к буквально тысячам планет совершенно разных размеров. Теперь мы знаем, что миры размером с Землю и чуть побольше встречаются чрезвычайно часто. Обсерватории из следующего поколения, которые появятся как в космосе (например, телескоп Джеймса Уэбба), так и на земле (ГМТ и ELT), смогут напрямую сфотографировать ближайшие из этих миров. Как же они будут выглядеть? Об этом спрашивает наш читатель:

Какого рода разрешение можно ожидать от этих фото? Несколько пикселей, или видимость каких-нибудь подробностей?

Сами по себе фотографии не будут очень впечатляющими. Однако из них мы сможем узнать всё, о чём можно мечтать (в разумных пределах).
(далее…)

Новые аргументы в пользу существования неуловимой девятой планеты

Астрономы нашли ещё один странный объект, чьё существование говорит в пользу того, что где-то на задворках Солнечной системы притаилось гигантское небесное тело.

Астрономия серьёзно потрепала научные учебники в последние несколько лет, особенно в вопросе составления каталога тел Солнечной системы. Большую часть XX века у нас было девять планет, и мы заучивали их названия в школе при помощи разных мнемонических правил вроде “Можно Вылететь За Марс, Ювелирно Свернув У Нашей Планеты” [англоязычный вариант: My Very Excellent Mother Just Served Us Nine Pizzas (моя прекрасная мама только что подала нам девять пицц)]. Потом в 2006 году последнее слово пришлось отбросить; группа астрономов определила, что Плутон лучше рассматривать, как карликовую, неполноценную планету. И вот сейчас, после порядка 10 лет относительного спокойствия, астрономы хотят добавить нам новую девятую планету, вновь переворачивая представление человечества о нашей Солнечной системе, не говоря уже о школьной программе.

За последние несколько лет некоторые астрономы раздумывали о новой планете в нашей космической округе. Проблема в том, что они её никогда не видели. Они лишь наблюдают свидетельства того, что она может существовать: скопление мелких небесных тел, движущихся по необычным орбитам по сравнению с остальной системой. Подобная конфигурация, по их словам, предполагает, что эти объекты толкнула какая-то мощная невидимая сила: огромная планета, в 10 раз превышающая Землю по массе, движущаяся по орбите на границе Солнечной системы, далеко за пределами орбиты Плутона.
(далее…)

Учёные нашли первую экзолуну: у планеты размером с Юпитер есть спутник размером с Нептун

Пара астрономов, обрабатывавших данные, полученные с телескопа Кеплер, обнаружили первую экзолуну. Луна находится в системе Kepler 1625, примерно в 8000 световых лет от нас, в созвездии Лебедь. Она вращается вокруг газового гиганта Kepler 1625b, и, в отличие от всех лун в Солнечной системе, представляет собой “газовую луну”.

Обнаружение экзолуны было лишь вопросом времени. Благодаря телескопу Кеплер мы нашли уже тысячи экзопланет. А где есть планеты, там можно ожидать и наличия лун. Но, хотя это казалось неизбежным, первая подтверждённая находка экзолуны – это все равно здорово.
(далее…)

Новые подсказки для поиска лесов на далёких планетах

Чтобы найти признаки растительной жизни на других мирах, полезно будет понять историю нашего

Впервые астрономы удалённо обнаружили признаки наличия жизни на планете в декабре 1990-го. “Космический аппарат Галилео обнаружил свидетельства наличия больших количеств газообразного кислорода, широко распространённого поверхностного пигмента с резким краем поглощения в красной части видимого спектра, и атмосферного метана, находящегося в экстремальной термодинамической неустойчивости”, писали астрономы в своей работе для журнала Nature. “Всё это вместе убедительно свидетельствует о возможности наличия жизни”.

Но каким-то особенным открытием это не стало. Имелась в виду планета Земля; по настоянию Карла Сагана космический аппарат Галилео по пути к Юпитеру направил свои инструменты на домашний мир, чтобы узнать, можно ли обнаружить жизнь на планете из космоса.
(далее…)

Найдены последние остатки обычной материи Вселенной

Десятилетиями астрономы не могли найти всю атомную материю Вселенной. Но в нескольких новых работах учёные раскрыли места, в которых она пряталась


Компьютерная симуляция горячего газа между галактиками намекает на местоположение недостающей материи Вселенной

Астрономы, наконец, обнаружили последние недостающие части Вселенной. Они прятались от нас с середины 1990-х, когда исследователи решили провести инвентаризацию всей “обычной” материи в космосе – звёзд, планет, газа, всего, что сделано из атомных частичек. (Это не “тёмная материя“, остающаяся совершенно отдельной загадкой). Они довольно неплохо представляли себе, сколько материи должно быть в сумме, на основе теоретического изучения процессов сотворения материи во время Большого взрыва. Изучение реликтового излучения (РИ) – остаточного свечения Большого взрыва – должно было подтвердить эти изначальные оценки.
(далее…)

Спросите Итана: если свет сжимается и расширяется вместе с пространством, как мы можем засечь гравитационные волны?


Вид с воздуха на детектор гравитационных волн Virgo, расположенный в муниципалитете Кашина близ города Пиза в Италии. Virgo – это гигантский лазерный интерферометр Майкельсона с плечами длиной по 3 км, дополняющий два одинаковых детектора LIGO длиной по 4 км.

За последние три года у человечества появился новый тип астрономии, отличающийся от традиционных. Для изучения Вселенной мы уже не просто ловим свет телескопом или нейтрино при помощи огромных детекторов. Кроме этого, мы также впервые можем видеть рябь, присущую самому пространству: гравитационные волны. Детекторы LIGO, которые теперь дополняет Virgo, и скоро будут дополнять ещё KAGRA и LIGO India, обладают чрезвычайно длинными плечами, которые расширяются и сжимаются при проходе гравитационных волн, выдавая обнаруживаемый сигнал. Но как это работает? Наш читатель спрашивает:

Если длины волн света растягиваются и сжимаются вместе с самим пространством-временем, как LIGO может обнаружить гравитационные волны? Они ведь расширяют и сжимают два плеча детектора, поэтому волны внутри них тоже должны расширяться и сжиматься. Разве укладывающееся в плечо количество длин волн не будет оставаться постоянным, в результате чего интерференционная картина не будет меняться, и волны будет нельзя засечь?

Это один из самых распространённых парадоксов, которые представляют себе люди, размышляющие о гравитационных волнах. Давайте разберёмся и найдём ему решение!
(далее…)

Нейтронные звёзды, белые карлики, коричневые карлики, и другие тела, не являющиеся звёздами


Нейтронная звезда – одно из плотнейших скоплений материи во Вселенной, однако на её массу есть верхний предел. Если выйти за него, нейтронная звезда схлопнется и сформирует чёрную дыру. Но ни нейтронные звёзды, ни чёрные дыры, несмотря на их большую массу, нельзя считать звёздами

Если говорить о звёздах, то их типов существует огромное количество. Наше Солнце не представляет собой ничего интересного, поскольку бывают звёзды более красные и более голубые, более яркие и более тусклые, более и менее массивные, причём во много раз. И если Солнце проживёт порядка 10-12 млрд лет, некоторые звёзды могут жить триллионы лет, а другие взрываются или схлопываются, прожив всего миллионы. Разнообразие звёзд огромно.

И всё-таки, многие объекты Вселенной, которые мы называем звёздами – белые карлики, коричневые карлики, нейтронные звёзды, и прочие – не являются звёздами на самом деле. Чтобы быть звездой, нужно не просто излучать свет, видимый в галактике. И вот почему, согласно астрономии, огромный набор объектов, которые мы зовём “звёздами”, не попадают под это определение.
(далее…)

Почему Хаббл не видит самые первые галактики


Впечатляюще огромное скопление галактик MACS J1149.5+223, свету которого потребовалось более 5 млрд лет для того, чтобы дойти до нас, было целью одной из программ серии Hubble Frontier Fields [осмотр рубежей Хабблом]. Этот массивный объект действует как гравитационная линза для объектов, расположенных за ним, вытягивая и увеличивая их изображение, что позволяет нам заглядывать в самую глушь космоса, находящуюся в относительно пустом регионе.

Даже мощнейший телескоп в истории человечества, космический телескоп им. Хаббла, не способен увидеть всё.
(далее…)

Спросите Итана: когда появились тёмная материя и тёмная энергия?


Теоретически мы хорошо знаем всю нашу космическую историю – но только качественно. Только подтверждая и открывая при помощи наблюдений различные этапы прошлого нашей Вселенной, которые должны были происходить, мы по-настоящему начинаем понимать нашу Вселенную. У происхождения тёмной материи и тёмной энергии есть ограничения по времени, однако точный момент их появления неизвестен.

Одна из наиболее загадочных тайн Вселенной звучит просто – “куда всё подевалось?” Всё, что мы видим, находим, или всё то, что взаимодействует с нами, состоит из частиц, перечисленных в Стандартной модели, включая фотоны, нейтрино, электроны, а также строительные блоки наших атомов – кварки и глюоны. Однако при изучении космического океана мы обнаруживаем, что всё это составляет лишь 5% от общей энергии Вселенной – всего остального мы не видим. Мы называем недостающие компоненты тёмной энергией (ТЭ) (68%) и тёмной материей (ТМ) (27%), но мы не знаем, что они такое. Знаем ли мы, когда они появились? Такой вопрос задаёт наш читатель:

Сегодня нормальная материя составляет всего 4,9%, а всё остальное занято тёмной энергией и тёмной материей. А откуда они взялись?

Давайте выяснять.
(далее…)

С какой скоростью вращаются звёзды?


R136a1 – самая массивная, из известных на сегодняшний день, звезда во Вселенной

Всё во Вселенной вращается. Планеты и их спутники вращаются вокруг своей оси и вокруг вращающихся звёзд, которые в свою очередь вращаются вокруг центра галактики. Как и все звёзды, наше Солнце вращается вокруг своей оси. Вы не можете заметить этого, поскольку невозможно долго смотреть на Солнце, не повредив глаза. Поэтому для наблюдения за нашей звездой вам необходим специальный фильтр для вашего телескопа, благодаря чему получится рассмотреть солнечные пятна и другие особенности на поверхности нашего светила. И если вы будете отслеживать их перемещение, то вы увидите, что солнечный экватор совершает один оборот за 24,47 дня, а более медленные полюса тратят на это 26,24 дня.

Солнце не является твёрдым каменным шаром – это сфера, состоящая из горячей плазмы, так что различные регионы могут вращаться с разными скоростями, однако оно вращается настолько медленно, что имеет форму почти идеальной сферы.

Если бы вы находились у “поверхности” Солнца, что конечно же невозможно, то ваша скорость составила бы около 7000 км/ч. Это кажется очень быстро, но насколько это быстро в сравнении с другими звёздами? И какая звезда является самой быстрой?
(далее…)